Topological magnetoelectric effect versus quantum Faraday effect

1. Observation of topological Faraday and Kerr rotations in quantum anomalous Hall state by terahertz magneto-optics.
Authors: K.N. Okada, Y. Takahashi, M. Mogi, R. Yoshimi, A. Tsukazaki, K.S. Takahashi, N. Ogawa, M. Kawasaki, and Y. Tokura

2. Quantized Faraday and Kerr rotation and axion electrodynamics of the surface states of three-dimensional topological insulators.
Authors: L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N.P. Armitage.

3. Observation of the universal magnetoelectric effect in a 3D topological insulator.
Authors: V. Dziom, A. Shuvaev, A. Pimenov, G.V. Astakhov, C. Ames, K. Bendias, J. Böttcher, G. Tkachov, E.M. Hankiewicz, C. Brüne, H. Buhmann, and L.W. Molenkamp.

Recommended with a commentary by Carlo Beenakker, Leiden University.
|View Commentary|


Cavity Quantum Spin Resonance

Controlling spin relaxation with a cavity.
Authors: A. Bienfait, J.J. Pla, Y. Kubo, X. Zhou, M. Stern, C.C. Lo, C.D. Weis, T. Schenkel, D. Vion, D. Esteve, J.J.L. Morton and P. Bertet.
Nature 531,74(2016)

Recommended with a commentary by Steven M. Girvin, Yale University.
|View Commentary|


Knots in Polymers

Knots as a Topological Order Parameter for Semiflexible Polymers.
Authors: Martin Marenz and Wolfhard Janke.
Phys. Rev. Lett. 116,128301(2016)

Recommended with a commentary by Kurt Kremer, Max Planck Institute for Polymer Research.
|View Commentary|


The hunt for the pairing glue in the cuprates

Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates.
Authors: Jin Mo Bok, Jong Ju Bae, Han-Yong Choi, Chandra M. Varma, Wentao Zhang, Junfeng He, Yuxiao Zhang, Li Yu, and X.J. Zhou.
Science Advances, 2, E1501329, 2016
arXiv: 1601.02493

Recommended with a commentary by Andrey Chubukov, University of Minnesota.
|View Commentary|


Closing the loopholes on Bell’s theorem

1. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers.
Authors: B. Hensen, H. Bernien, A. E. Dréau, A. Roisterer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abelen, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Switchen, D. Elkouss, S. Wehner, T. H. Taminiau,
and R. Hanson
Nature 526, 682–686 (2015)

2. Strong Loophole-Free Test of Local Realism.
Authors: L. Shalm et al.
Phys. Rev. Lett., 115, 250402 (2015)

3. Significant-loophole-free test of Bell’s theorem with entangled photons.
Authors: M. Giustina et al.
Phys. Rev. Lett., 115, 250401 (2015)

Recommended with a commentary by Anthony J. Leggett, University of Illinois.
|View Commentary|


From monolayer back to bulk FeSe-based high-temperature superconductors

1. Surface electronic structure and isotropic superconducting gap in (Li0.8Fe0.2)OHFeSe.
Authors: X.H. Niu, R. Peng, H.C. Xu, Y.J. Yan, J. Jiang, D.F. Xu, T.L. Yu, Q. Song, Z.C. Huang, Y.X. Wang, B. P. Xie, X. F. Lu, N. Z. Wang, X. H. Chen, Z. Sun, and D. L. Feng.
Phys. Rev. B 92, 060504 (2015)

2. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.
Authors: L. Zhao, A. Liang, D. Yuan, Y. Hu, D. Liu, J. Huang, S. He, B. Shen, Y. Xu, X. Liu, L. Yu, G. Liu, H. Zhou, Y. Huang, X. Dong, F. Zhou, K. Liu, Z. Lu, Z. Zhao, C. Chen, Z. Xu and X. J. Zhou.
Nat. Commun. 7, 10608 (2016)

Recommended with a commentary by Atsushi Fujimori, University of Tokyo.
|View Commentary|


Soft Matter at the nanoscale constitutes an information-transporting medium

1. Allosteric Dynamic Control of Binding.
Authors: F. Sumbul, S.A.E. Acuner-Ozbabacan and T. Haliloglu.
Biophys. J., 109, 1190-1201 (2015)

2. Quantifying information transfer by protein domains: Analysis of the Fyn. SH2 domain structure
Authors: T. Lenaerts, J. Ferkinghoff-Borg, F. Stricher, L. Serrano, J. W. H. Schymkowitz and F. Rousseau.
BMC Structural Biology, 8:43 (2008)

Recommended with a commentary by Tom Mcleish, Durham University.
|View Commentary|


Optical second harmonic generation reveals hidden odd-parity order in Sr2IrO4

Evidence of an odd-parity hidden order in a spin-orbit coupled correlated iridate.
Authors: L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T. Qi, G. Cao and D. Hsieh.
Nature Phys. 12, 32 (2016)

Recommended with a commentary by Joseph Orenstein, Department of Physics, UC Berkeley.
|View Commentary|


Frank Kasper Phases of Squishable Spheres and Optimal Cell Models

1.Selective assemblies of giant tetrahedra via precisely controlled interactions.
Authors: M. Huang, C.H. Hsu, J. Wang, S. Mei, X. Dong, Y. Li, M. Li, H. Liu, W. Zhang, T. Aida, W.B. Zhang, K. Yue and S. Z. D. Cheng.
Science 348, 424(2015)

2.Sphericity and symmetry breaking in the formation of Frank-Kasper phases from one component materials.
Authors: S. Lee, C. Lieghton and F. S. Bates.
Proc. Nat. Acad. Sci. USA 111, 17723(2014)

3.σ phase formed in conformationally asymmetric AB-type block copolymers.
Authors: N. Xie, W. Li, F. Qui, A.C. Shi.
ACS MacroLetters 3, 906(2014)

Recommended with a commentary by Gregory M. Grason, Polymer Science and Engineering, UMass Amherst.
|View Commentary|


Getting a grip on quantum criticality in metals

1.Ising nematic quantum critical point in a metal: a Monte Carlo study.
Authors:Yoni Schattner, Samuel Lederer, Steven A. Kivelson, Erez Berg.

2.The nature of effective interaction in cuprate superconductors: a sign-problem-free quantum Monte-Carlo study.
Authors: Zi-Xiang Li, Fa Wang, Hong Yao, Dung-Hai Lee.

3.Competing Orders in a Nearly Antiferromagnetic Metal.
Authors: Yoni Schattner, Max H. Gerlach, Simon Trebst, Erez Berg.

Recommended with a commentary by Jörg Schmalian, Karlsruhe Institute of Technology.
|View Commentary|


Measuring Entanglement by Swapping Quantum Twins

Measuring entanglement entropy through the interference of quantum many-body twins.
Authors: Rajibul Islam, Ruichao Ma, Philipp M. Preiss, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Markus Greiner.

Recommended with a commentary by Ashvin Vishwanath, UC Berkeley.
|View Commentary|


Spontaneous emergence of autocatalytic information-coding polymers

Spontaneous emergence of autocatalytic information-coding polymers.
Authors: Alexei V. Tkachenko and Sergei Maslov.
J. Chem. Phys. 143,045102(2015)

Recommended with a commentary by Alexander Grosberg, NYU.
|View Commentary|


Experimental Studies of Many-Body Localization in Quasi-Random Optical Lattices

1. Observation of many-body localization of interacting fermions in a quasi-random optical lattice.
Authors: M. Schreiber, S. S. Hodgman, P. Bordia, Henrik P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider and I. Bloch.
Science 349,842(2015)

2. Coupling Identical 1D Many-Body Localized Systems.
Authors: P. Bordia, H. P. Luschen, S. S. Hodgman, M. Schreiber, I. Bloch and U. Schneider.

Recommended with a commentary by Catherine Kallin, McMaster University.
|View Commentary|


PARADIGM LOST – Where the Missing Entropy Goes in Spin Ice

Absence of Pauling’s Residual Entropy in Thermally Equilibrated Dy2Ti2O7.
Authors: D. Pomeransky, L.R. Yaraskavitch, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, and J.B. Kycia.
Nature Physics, 9,353(2013)

Recommended with a commentary by A. P. Ramirez and B. S. Shastry, University of California, Santa Cruz.
|View Commentary|


Inserting defects into graphene: response by curvature and strain

Bending Rules in Graphene Kirigami.
Authors: B.F. Grosso and E.J. Mele.
Phys. Rev. Lett. 115,195501(2015)

Recommended with a commentary by Benny Davidovitch, Physics Department, UMass Amherst..
|View Commentary|


Even-denominator fractional quantum Hall physics in ZnO

Even-denominator fractional quantum Hall physics in ZnO.
Authors: J. Falson, D. Maryenko, B. Friess, D. Zhang, Y. Kozuka, A. Tsukuzaki, J. H. Smet, and M. Kawasaki.
Nature Physics 11,347(2015)

Recommended with a commentary by Bertrand I. Halperin, Harvard University.
|View Commentary|


Colored Noise Models of Active Particles

1. Multidimensional stationary probability distribution for interacting active particles.
Authors: C. Maggi, U.M.B. Marconi, N. Gnan, and R. Di Leonardo.
Scientific Reports, 5,10742(2015)
2. Effective interactions in active Brownian suspensions.
Authors: T.F.F. Farage, P. Krinninger, and J.M. Brader,
Physical Review E 91,042310(2015)

Recommended with a commentary by Mike Cates, University of Cambridge, and Cesare Nardini, University of Edinburgh.
|View Commentary|


Quantum Hydrodynamic Transport in Graphene

1.Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene.
Authors: Andrew Lucas, Jesse Crossno, Kin Chung Fong, Philip Kim, Subir Sachdev.

2.Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene.
Authors: Jesse Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, Achim Harzheim, Andrew Lucas, Subir Sachdev, Philip Kim, Takashi Taniguchi, Kenji Watanabe, Thomas A. Ohki, Kin Chung Fong.

3.Negative local resistance due to viscous electron backflow in graphene.
Authors: D.A.Bandurin, I.Torre, R.Krishna Kumar, M.Ben Shalom, A. Tomadin, A.Principi, G.H. Auton, E.Khestanova, K.S. Novoselov, I.V. Grigorieva, L.A. Ponomarenko, A.K. Geim, M. Polini.

4.Electron Viscosity, Current Vortices and Negative Nonlocal Resistance in Graphene.
Authors: Leonid Levitov, Gregory Falkovich.

5.Non-local transport and the hydrodynamic shear viscosity in graphene.
Authors: Iacopo Torre, Andrea Tomadin, Andre K. Geim, Marco Polini.

6.Collision-dominated nonlinear hydrodynamics in graphene.
Authors: U. Briskot, M. Schu ?tt, I. V. Gornyi, M. Titov, B. N. Narozhny, A. D. Mirlin.

7.Bulk and shear viscosities of the 2D electron liquid in a doped graphene sheet.
Authors: Alessandro Principi, Giovanni Vignale, Matteo Carrega, Marco Polini.

Recommended with a commentary by Francisco Guinea, Imdea Nanoscience and University of Manchester.
|View Commentary|


Loops of Dirac points in three dimensions

Line of Dirac nodes in hyperhoneycomb lattices.
Authors:Kieran Mullen, Bruno Uchoa and Daniel T. Glatzhofer.
Phys. Rev. Lett. 115,026403(2015)

Recommended with a commentary by Rahul Nandkishore, CU Boulder.
|View Commentary|


Composite fermions meet Dirac

1.Is the composite fermion a Dirac particle?
Authors:Dam Thanh Son.

2.Dual Dirac liquid on the surface of the electron topological insulator.
Authors:Chong Wang and T. Senthil.

3.Particle-vortex duality of 2D Dirac fermion from electric-magnetic duality of 3D topological insulators.
Authors:Max A. Metlitski and Ashvin Vishwanath.

4.Half-filled Landau level, topological insulator surfaces, and 3D quantum spin liquids.
Authors:Chong Wang and T. Senthil.

5.The half-filled Landau level: the case for Dirac composite fermions.
Authors:Scott D. Geraedts, Michael P. Zaletel, Roger S. K. Mong, Max A. Metlitski, Ashvin Vishwanath, and Olexei I. Motrunich.

Recommended with a commentary by Jason Alicea, Caltech.
|View Commentary|